The Model Theory of Separably Tame Valued Fields
نویسنده
چکیده
A henselian valued field K is called separably tame if its separable-algebraic closure K is a tame extension, that is, the ramification field of the normal extension K|K is separable-algebraically closed. Every separable-algebraically maximal Kaplansky field is a separably tame field, but not conversely. In this paper, we prove Ax– Kochen–Ershov Principles for separably tame fields. This leads to model completeness and completeness results relative to the value group and residue field. As the maximal immediate extensions of separably tame fields are in general not unique, the proofs have to use much deeper valuation theoretical results than those for other classes of valued fields which have already been shown to satisfy Ax–Kochen–Ershov Principles. Our approach also yields alternate proofs of known results for separably closed valued fields.
منابع مشابه
The Algebra and Model Theory of Tame Valued Fields
A henselian valued field K is called a tame field if its algebraic closure K̃ is a tame extension, that is, the ramification field of the normal extension K̃|K is algebraically closed. Every algebraically maximal Kaplansky field is a tame field, but not conversely. We develop the algebraic theory of tame fields and then prove Ax–Kochen– Ershov Principles for tame fields. This leads to model compl...
متن کاملThe model theory of tame valued fields Preliminary version
A henselian valued field K is called a tame field if its separable-algebraic closure Ksep is a tame extension, that is, Ksep is equal to the ramification field of the normal extension Ksep|K. Every algebraically maximal Kaplansky field is a tame field, but not conversely. We prove Ax–Kochen–Ershov Principles for tame fields. This leads to model completeness and completeness results relative to ...
متن کاملNotes on extremal and Tame Valued Fields
We extend the characterization of extremal valued fields given in [1] to the missing case of valued fields of mixed characteristic with perfect residue field. This leads to a complete characterization of the tame valued fields that are extremal. The key to the proof is a model theoretic result about tame valued fields in mixed characteristic. Further, we prove that in an extremal valued field o...
متن کاملSeparably Closed Fields and contractive Ore Modules
We consider valued fields with a distinguished contractive map as valued modules over the Ore ring of difference operators. We prove quantifier elimination for separably closed valued fields with the Frobenius map, in the pure module language augmented with functions yielding components for a p-basis and a chain of subgroups indexed by the valuation group.
متن کاملThe Defect
We give an introduction to the valuation theoretical phenomenon of “defect”, also known as “ramification deficiency”. We describe the role it plays in deep open problems in positive characteristic: local uniformization (the local form of resolution of singularities), the model theory of valued fields, the structure theory of valued function fields. We give several examples of algebraic extensio...
متن کامل